

How should CBS react to the replication crisis in science?

Sandoz, De Houwer, Hayes, Hussey, McCracken

Funded by Ghent University Grant BOF16/MET_V/002 to JDH

Brief introduction to replicability

2

Why are we talking about replicability?

- Bem (2011)
 - "Evidence" humans can read the future
- Simmons et al. (2011)
 - Modal strategies can make any data produce statistically significant results
- Consensus that replicability of psychology research is problematically low
 - 1/3 of 100 experiments replicate (Open Science Collaboration, 2015)
 - 5/6 seminal studies do not replicate (Persp Psych Sci RRRs)
- Problem goes beyond replicability, but does include replicability

What is replicability?

- An unclear and contentious word -
 - Replicability \neq recreation of the past
 - Replicability \neq only running replication studies
 - 1. Reproducibility same data and analysis
 - 2. Robustness *different analytic strategy*
 - 3. Replicability same measures & population, different sample
 - 4. Generalisability different materials and/or different samples
- Open science & transparency
- Fraud detection/prevention
- Real aim is to increase the quality of our research, increases in replicability is a side benefit

Why are we talking about replicability?

- Are replication failures failures of theorising, methodology, or statistics?
 - CBS advantage on purpose/philosophy front
 - But also vulnerable on methodology & statistics
- Gap between the historically important behavioural work and what we mostly publish now
 - 79% of experimental papers in JCBS in 2016 stated a priori hypotheses and used null hypothesis significance testing (p values)
 - Clinical trials represent a important subsection of CBS research
 - At least this chunk of research would benefit from replicability initiatives

Key articles

- Reasons and solutions discussed at length elsewhere:
 - Asendorpf, Conner, De Fruyt, De Houwer, Denissen, Fiedler, ... Wicherts. (2013).
 Recommendations for Increasing Replicability in Psychology: Recommendations for increasing replicability. *European Journal of Personality*, 27(2), 108–119.
 - Munafò, Nosek, Bishop, Button, Chambers, Percie du Sert, ... Ioannidis. (2017). A manifesto for reproducible science. *Nature Human Behaviour, 1*(1), 21
 - Open Science Collaboration. (in press). Maximizing the reproducibility of your research. In Lilienfeld & Waldman (Eds.), *Psychological Science Under Scrutiny: Recent Challenges and Proposed Solutions.* New York, NY: Wiley.
 - Spellman, Gilbert, & Corker. (2017). Open Science: What, why, and how.

If I knew how it was made, would I still want to eat it?

Contingencies governing behaviour of the scientist

"I'm tired of being scared of my data"

Contingencies governing behaviour of the scientist

- Publish or perish
 - Contingent on positive findings
 - Dominance of null hypothesis significance testing
- CBS in a unique position to study these contingencies!
- Sidman (1960) lists several motivations to run a study
 - 1. Test a hypothesis
 - 2. Demonstrate novel behavioural phenomena
 - 3. Try a new procedure
 - 4. Inquisitiveness about the world

9

Replicability initiatives that could enhance CBS

- **Open materials**
- **Open data**
 - Required by US federal funding and EU funding
 - EU prescribes that it is the norm

- Preregistration

Lab-book approach to research

- Registered reports

Moves contingencies of publishing from *finding* positive results to *asking* good questions

- 21 word solution

Common fears and issues

- "Adhering to these initiatives would slow down my research"
 - No, especially across studies
 - Decrease duplication of effort, save time and money
 - Obtaining, creating and modifying materials
 - Running studies
 - Processing & analysing data
 - Informing future research
 - Track your own thought process over time
 - Easier to publish inductive work, null results, "imperfect" data
 - <u>All optional</u>: *positive reinforcement only*

Common fears and issues

- "You cannot replicate any experiment, because behaviours-in-context always differ"
 - "Replicability" is more about quality of research than doing replication studies
 - More than repeating old experiments, but repeating old experiments to gain new data
 - Not fact checking
 - Inevitable deviations between experiments in:
 - past environment (pre experimental learning history)
 - current environment (experiment context)
 - observed behaviour
 - Studying impact of these deviations speaks to the nature of the phenomena

Benefits already supported by data

- ↑ Understanding of the nature of the phenomena
- ↑ Citations
- ↑ Funding
- ↑ Visibility
- ↑ Ability to do riskier research, publish "imperfect" results
- ↑ Speed of selection and discarding of ideas
- ↓ Reporting mistakes

(McKiernan et al., 2016 review; Wicherts et al., 2011)

Panel discussion

14